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I. INTRODUCTION

The problem addressed herein is the evaluation of asymptotic statistics for estimates
of autoregressive (AR) parameters from observations of mixed time series of known order.
The observed time series is considered to be mixed if the series is generated by an ailtoregres-
sive moving-average (ARMA) process or by an autoregressive process observed in additive
white noise (AR + N). It has been shown by Walker [ Il and Pagano [21 that a time berii
formed by the addition of an autoregressive process of order (M) and white noise shouk, oe
modeled as an ARMA process of order (M,M). In both cases the estimation of the AR param-
eters and the evaluation of estimate statistics are complicatAd by the mixed nature of the
observed time series.

For an AR process of known order Mann and Wald [31 showed that the least-squares
estimate of the process parameters coincides with their maximum likelihood estimate. It was
also proven in [ 31 that the least-squares parameter estimate errors are jointly multivariate
normal with zero mean and finite covariance matrix. The structure of the asymptotic
covariance matrix was also evaluated. Walker [1 was the first to examine estimating the
AR parameters for an AR + N process. In [ 1] the asymptotic efficiency and variance were
evaluated for a first order AR process observed in the presence of additive noise. For the
mixed ARMA process, Gersch [4] proved that asymptotically unbiased estmates of the AR
parameters can be obtained by using the "higher order" Yule-Walker equations. The structure
of the asymptotic covariance matrix was obtained, but asymptotic no:mality was not proven.

In this report, it is shown that the "higher order" Yule-Walker estimates of the AR
parameters for both types of mixed processes are asymptotically jointly multivariate normal.
The structure of the asymptotic covariance matrix is calculated for both types of process.
The proof follows that of Kromer [51, in which a similar asymptotic normality result was
proven for an AR process without noise.

These results exte.nd the work of Gersch [41 in that the estimates are shown to be
asymptotically jointly multivariate normal. The structure of the asymptotic covariance
matrix, obtained herein, is shown to be equivalent to that obtained by Gersch. The demon-
stration of asymptotic normality for the AR parameters for an AR + N process is a new result.
The evaluation of the structure of the asymptotic covariance matrix for the AR + N case
extends the result Walker [ I ] obtained for a first order AR process.
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1i. PARAMETER ESTIMATOR FOR MIXED SERIES

Assume that the observed discrete parameter time series [Yt } is a real, zero-mean,

stationary, normal process. The series { Yt } is generated by a mixed autoregressive moving-r iaverage process of known order (M,M)

+I • ~~~~Yt - aI Yt- 1 -.. aM Yt-M = ft - b, q t-, .. bM tt_M(1)

where the sequence {qt I is assumed to be independent, identically distributkd (i.i.d.)

N(O, 02). We evaluate the autocovariance function for this process by multiplying (1)

through by Yt-k, and, taking expectations term by term, we get

E[Yt-kYt] - aI E[Yt.k, Ytl ... aM E[yt-kYt.ktM]

= E[Yt.k ntl - b E[Yt-k nt- ]... bM E[Yt...k t-M] (2)

Since Yt-k depends only on inputs rqtj for t-j < t-k, it follows that

0 k>jE[Yt-k I? t-J I R yq k <j

From (2) we see that the range of j is 0 to M. Defining Ry(k) = E[Yt Yt-kl, we can

write (2) as

Ry(k)- aI Ry(k-l)- . aM Ry(k-M) 0 K M+1,M+2,.. ,2M (3)

Define the (MXM) matrix rH by

Ry(M) Ry(M-1)... Ry(l)

Ry(M+ 1) .. Ry(2)

Ry(2M-1) ... Ry(M)

and the (MX 1) vectors

AT [aI, a2, .... aMj

T
R= [Ry(M+ 1), Ry(M+2). Ry(2M)1.

The relationships defined by (3) can be written as

1-11 A RH 
(4)
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These relationships are usually referree to as the "higher order" Yule-Walker equations.

Define the covariance estimator by

iiN-Ik1

Ry(k) - " tt + ikl
•: ; t= 1

If the true covariances in _.H and RH are replaced with the corresponding covariance

AA

estimates, the resulting matrix and vector are denoted by r and •- n h ouino

rH A H (5)

provides consistent, but not efficient, estimates of the autoregrý.ssive parameters for a mixed

autoregressive moving-average time series [61.

III. ASYMPTOTIC STATISTICAL PROPERTIES

In this section we prove that if the "higher order" Y-W equations are used to estimate
the AR parameters of a mixed time series, the estimate errors are asymptotically jointly multi-
variable normal.

Define the following vectors: Accession For
.ii{ NTS -C RA& I li

2M- = [Ry(l), Ry(2 ),. . Ry(2M)] DTIC TABo2M .... Unannouniced [-

k GT~~~~~1M [eik el~ . eiM],LS f JO__

M [e-iX, e-i2X.. e-i2MX]

G2M e"e Distribut ion/

2 ~Availability Codes
U2M =2M G2M . . o r. .+_M=G2 G TMDs Special

U_2M = U2M + U2M

ýbT = [0, o,.. o]
-M

Assumption I: {Yt } is a normal, real, zero-mean stationary time series and

SI k Ry(k){ <

6. E Parzen, Effieent estimation of stationary time series mixed schemes, Stanford U, Tech Report

16 on contract Nonr-225(80), 1971

L- ___i-•--•____:-2:-'• ' -"+•-•_t: "--::---.. . :,' "•t :- t'• • • :•.-. -,• - • '•. ... _ aa..3



Theorem 1: Let [Yt. satisfy Assumption I, then

are asymptotically jointly multivariate normal with zero mean and covariance structure given
byf

lim cov INya(fy(k)- Ry(k)), NY (Ry(j)- Ry(j))

=2w ei(k+)X + ei(kj)X 2X) dX (6) a

-wf

The asymptotic covariance matrix structure is given by

=2w (X)dX. (7)

-Y1"

Proof: This result follows (CActly from Theorem 5.2 of Brillinger [71.

Lemma 1: There exists a (MX2M) matrix D such that

_ (R2M- R2M) =H-H A (8)

where

-aM -a 1 10 .

D 0[O-am -a, 1 10 .." 0

0 -aM.-a I 1

Proof: This result follows directly f,',;. tue definition of the matrix D and the Y-W relation-
ship

RH- -PH A .k

Lemma 2: Let {Yt I satisfy Assumption I and assume {Yt } is an ARMA (M,M) series.
The elements of the vector

N/2 (RHIH- A)

7. DR Brillinger, Asymptotic properties of spectral estimates of second order, Biometrica, 56, 2,
p 375-390, 1969
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are asymptotically jointly multivariate normal with zero mean and covariance matrix
structure

lim coy 0 mAl- )

-2w f L 2 M]T y(X)dX (9)

Proof: From Lemma 1 we have that

( -- H A) -_D (92M - R2M)

Since D is a matrix of constants, we can conclude from Theorem I that the elements of
the vector

N H -EH A)

are asymptotically jointly multivariate normal with zero mean and covariance mitrix structure

given by equation (9) U

Lemma Assume that { Yt} is an ARMA (MM) series, then we have that

S -1**
-EHN-+ao -H

P.where the notation 7 indicates convergence as N-+oo is "in probability."

Proof: Given the previous definition of the (MXM) matrix "H we have

Ry(M) Ry(M-1) ... Ry(1)

A

RRy(M+ I I "" Ry(2)

fty(2M) ... Ry(M)

thus, by Theorem 8B of Parzen [81 we can conclude

U $. P2H "H•

8. E Parzen, An approach to time series analysis, Ann Math Stat, vol 32, p 951-989, 1961
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Gersch [41 proves that the matrix rH is nonsingular; thus, exi s

H exists. Since the matrix

inverse is a continuous function (from RM 2 to RM2 ) on a neighborhood containing .EH,
it follows that

T r H (10)

We now state and prove the main result of this report. In the course of the following
development we will use the notation

Coy 0NN½TI

This expression should be interpreted as implying that the vector of random variables N0
converses in probability, as N-+ao, to a vector of random variables that are jointly multivariate
normally distributed with zero mean and covariance matrix E.

Theorem 2: Let tYt} satisfy Assumption I and assume iYt } is an ARMA (M,M) series,

then the AR parameter estimate errors

NY; ( 1 - a,), N(42 - a2), . ... , NV½ (iM - aM)

are asymptotically jointly multivariate normal with zero mean and covariance matrix structure
given by

coy IN14(A), N'11 A)TI~.

2w f -1  D 1L'M DT( Il)T 02)dX(1

Proof: Define the (MX 1) vector Z by

ZI,N

Z2,N

zH (RH-•CH A)- N r' H TH-EH A)

ZM,N

By the results of Lemma 2 and Lemma 3 we can conclude that

-12 (A AZ N r'-H H__ (RH -1HA A) -g= -M (12)
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Let (n,&r, P) be the underlying probability space. For arbitrary e > 0 and N > M define

V Ae,N- jwc.fl- IZiNI<eiml,2 ,.. .1 Mj

By (12) we have that for every qe[10, 1 there exists a N such that

eN 6,,7

But since IZi,NI e, for i = 1, 2, ... , M, this implies the existence of the vector

-H (AH -fH A) for all w. e AC,N. This result and (5) imply that we can write

(A A) (AH -tH A)

for all cw e AE,N Substituting this result into the definition of the vector Z we get

z •(A, -A) - N EHi (Rn 7-EH A)

for all w e Ae,N- Since the selection of e and ir is arbitrary we can conclude that

1..4H (13)N½2 (1,- A) - 0N½ I]H-PH ) P '-M (3LI __N-.,oo -

Therefore, applying Lemma 2, the stated result follows.

We have proven that, when the higher order Yule-Walker equations are used to
estimate the AR parameters of a mixed autoregressive moving-average process, the parameter
estimation errors are asymptotically jointly multivariate normal with mean zero and covariance
matrix structure given by

coy fN½ (A - .,N/(2 A)TI~

2w J -I~ D UM pT (p)T 2 (X) d

-V"

Let us now examine the form of a typical element of this covariance matrix, but first look at
a typical element of D U2M DT, call it tkj" We have

I- I
I l I II lI I ll II I •



2M 2M
~~kj k dfUnm dimn

nal rn-I

2M 2M n- ) i n m X
I dkn dim (einm +
nal rn-i

F;2M 2M 2M 2M
= Z i~~ ime(n-rn)) + d d i(n+m)),

n-I rn-I n=1 rn-i
2M2M 2M . 2M

ddkn es" Ujn e~ djm eIi~
n=1 m=1 riinl Mali

Examining each term independently, using the definition of the matrix.Q, and defining
M

A(e-iX) aj exp() we get
j~ 1

2M K+M-I
in?,~f e = aM+k-n ein' + ei(M+k)X

n=1 n~k

=A(e&ix) ei(M+k)X

* and

2M j+M.+I
T, dim e-imx=- aM4jim e-imx e-i(M+JP)X

2 -A(eix) e-i(M+j))X

We can now express tkj as

-~ ~k =A(e-lX) A(eiX) ei(k-j)X + A(e-?) A(e-iX) ei(k~j)X ei2MX

Define the matrix P by 
-

P=27F i~~MD (X) A, 1
8



a typical element of P, call it Pkj is given by

Pkj= 2w f kj 4 (X)dX

" 2w J A(e-iX) A(eiX) ei(k-j)X *2 (X) dI
ff

+ 2w A(eiX) A(e-iX) ei(k+j)X ei 2MX O2 (X) dX (14)f
At this point we state and prove the following Lemma.

Lemma 4: Let {Yt} satisfy Assumption I and assume {Yt} is generated
by a mixed autoregressive moving-average process, then

27 f (A(e-iX)) 2 ei(k+j)X ei 2 MX 0 2 (X) dX =0J Y

Proof: From the definition of the power spectral density for an ARMA process we can
write

2 IB(e-iX) 12
77 IA(e-iX) 12

M M
where B(e-i) = l- bq exp(-iX) and A(e- I - F, a exp(-inX).

2=1 n=l

Let

ir

Pkj = 21 (A(e-ix ))2 ei(k+j)X ei2MX (k)dX

-/r



then after the substitution for oy(N) given above we have

4 7r
S[(e )(B(e-iX) 2 exp i(k+j + 2M)X

(Bi 27 f dXe?')

-.7

We can write

(- M 0 00ex
1 anexp(-inX))- 2  exp i(nl+n 2)XJ

n=l nl=0 n2=0 ,

and with bo =1

M M

[B(eiX) B(e-iX)] 2 - I" bl 2 b0Q3 bR4 exp i(£1-Q2+Q3-Q4))"
I/ =0 9/4=0

Now, we have

4 r 00 M002

From~bi we b4 b b2 b Cn Ci

f -"2 b3 4 Cnl Cn21/1T R=0 /4=:O n I=:O n2=-O

S•exp li[(k +j +2m) + (2 1-/2+1/31/4 + (n I + n 2)] X] dA

04 M M cc 00• •

1/ = 14= bQ/ b12 bQ/ b1/ Cn ICn2

thus nt =0 n2=0

. " ~~~exp {i[(nl+n2)+ (k+j+2M+1/-Q + -14]X dX

From equation (3.5 6) of Kromer [51 we have that

yd 2: nj - exp i n+n-)+d)), dX,=0ford>0

-r nl=0 n2=0 !Cn(l !

thus it follows that Pkd =0 shiice
Ski

k + j + 2M + 9 1 -R2 + Q3 R14 >0 !

10



By the result of Lemma 4 we have that

2w A(e-) A'eix) •i(k-j)"y (?) d) (15)

-f

We will now examine the form of this covariance term for two cases: (I) the observed
process { Yt } is a mixed autoregressive moving-average ARMA process and (2) { Yt } ih the
sum of an autoregressive process plus white noise AR + N.

1. AUTOREGRESSIVE MOVING-AVERAGE CASE

We have previously stated that the power spectral density for the ARMA process is
given by

or• B(ei'*) B(e-i'),

2w M~ei) A(e-ik) "

I Substituting this expression into 15) we get

""k 17 f B(eiX) B(e-ix) ei(k-j) OyO,) dX. (16)

Define •v(?,) to be the power spectral density for the moving-average component of the
process; ie,

•v(,) = a 2 B(eix) B(e-ix)

Now we can rewrite (16) as

f-

M
-= rv(R)Ry(R-k+j) (17)

Q=-M

, II

• &

*1.



where, by detinition, rv(R) = T2 1 bjbj+R and Ry(R) = E [Yt Yt-_Q

j0o

We can write (17) as

M
Pkj --, ) Ryk-j r(Q) IRy(-k+j) + Ry (--k+j)

a'
Define the matrix 0[2 element by element as r£(k-j) = Ry (R-k+j) and P is the matrix of
elements Pkj, then we have

P r(O)--+ -" rv(Q) 1r, + (E-)T

Thus, our final result follows from (11),

Coy 1 N'&A- A), N'Y2 (A^-A I -H T -

which is equivalent to the result obtained by Gersch 141. Gersch did not prove asymptotic

normality, but the forms of the asymptotic covariance matrices are equivalent.

2. AULTOREGRESSIVE PLUS NOISE CASE

It was shown by Walker [ 1 and Pagano [ 21 that when the observed time series is
generated by an AR process of order M plus white noise an ARMA (M,M) model as given by
(1) can be used to represent the series. If we let

=X +nt

where X is an AR process of order M and nt is i.i.d. N(O, c ) then {Yt can be represented
by (1) and the general covariance relationship of (11) applies. A more specific relationship,
that takes into account the properties of the AR + N series, is calculated below.

We can write the power spectral density for the AR + N process as

o2
ey• "+ =n2+eXx

n A(eix) AMe-il+)

12

,,• x ..... t . ..



Substituting this expression into (15), we get

On Aleix) Ale-ix) •i(k-j)X dXP k i w

--W

W~ Ir
+on a2w ei(k-j)) dX + e2#+o 2 ~ *xX() ei(k-jA d)X

+ 2w 1+G
.- I --w
-W i

an 4 7J A(ei)) A(e-ix) ei(k-j)? dX + 2an 2 ae2 6(k-j) + ue2 Rx(k-j)

7r

ay n e 28kj+a.2Ry (k-j) + On. AI1')'~ A(e-iX) ei(k-j)XdA

For the AR+N process we can express the matrix p as
7r

non2 a12 1+ 2 rO+ An f Ale-ik ) GMQM M dX

"-w/

and the final result is

coy IN/A2((A^. A), N-12 A)TI r )T.

IV. CONCLUSIONS

The estirmation of the AR parameters for mixed time series has been studied for two
types of mixed series-time series generated by an ARMA process and time series generated
by an AR process observed in white noise. In both cases the estimates have been shown to be
asymptotically jointly multivariate normal with zero mean and covariance matrix stricture
given by

coy Nv2 (A^- A), N/2 (A- A) - p(_)T

where the form of the matrix Pis dependent on the type of mixed series assumed.

The results obtained relative to the asymptotic statistics associated with the AR+N
time series are of considerable interest to researchers working in the area of AR spectral
estimation of noisy signals.

j ' 13
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